1,108 research outputs found

    Computing FO-Rewritings in EL in Practice: from Atomic to Conjunctive Queries

    Full text link
    A prominent approach to implementing ontology-mediated queries (OMQs) is to rewrite into a first-order query, which is then executed using a conventional SQL database system. We consider the case where the ontology is formulated in the description logic EL and the actual query is a conjunctive query and show that rewritings of such OMQs can be efficiently computed in practice, in a sound and complete way. Our approach combines a reduction with a decomposed backwards chaining algorithm for OMQs that are based on the simpler atomic queries, also illuminating the relationship between first-order rewritings of OMQs based on conjunctive and on atomic queries. Experiments with real-world ontologies show promising results

    First order-rewritability and containment of conjunctive queries in horn description logics

    Get PDF
    International audienceWe study FO-rewritability of conjunctive queries in the presence of ontologies formulated in a description logic between EL and Horn-SHIF, along with related query containment problems. Apart from providing characterizations, we establish complexity results ranging from EXPTIME via NEXPTIME to 2EXPTIME, pointing out several interesting effects. In particular, FO-rewriting is more complex for conjunctive queries than for atomic queries when inverse roles are present, but not otherwise

    Impossibility of independence amplification in Kolmogorov complexity theory

    Full text link
    The paper studies randomness extraction from sources with bounded independence and the issue of independence amplification of sources, using the framework of Kolmogorov complexity. The dependency of strings xx and yy is dep(x,y)=max{C(x)C(xy),C(y)C(yx)}{\rm dep}(x,y) = \max\{C(x) - C(x \mid y), C(y) - C(y\mid x)\}, where C()C(\cdot) denotes the Kolmogorov complexity. It is shown that there exists a computable Kolmogorov extractor ff such that, for any two nn-bit strings with complexity s(n)s(n) and dependency α(n)\alpha(n), it outputs a string of length s(n)s(n) with complexity s(n)α(n)s(n)- \alpha(n) conditioned by any one of the input strings. It is proven that the above are the optimal parameters a Kolmogorov extractor can achieve. It is shown that independence amplification cannot be effectively realized. Specifically, if (after excluding a trivial case) there exist computable functions f1f_1 and f2f_2 such that dep(f1(x,y),f2(x,y))β(n){\rm dep}(f_1(x,y), f_2(x,y)) \leq \beta(n) for all nn-bit strings xx and yy with dep(x,y)α(n){\rm dep}(x,y) \leq \alpha(n), then β(n)α(n)O(logn)\beta(n) \geq \alpha(n) - O(\log n)

    Theoretically optimal datalog rewritings for OWL 2 QL ontology-mediated queries

    Get PDF
    We show that, for OWL2QL ontology-mediated queries with (i) ontologies of bounded depth and conjunctive queries of bounded treewidth, (ii) ontologies of bounded depth and bounded-leaf tree-shaped conjunctive queries, and (iii) arbitrary ontologies and bounded-leaf tree-shaped conjunctive queries, one can construct and evaluate nonrecursive datalog rewritings by, respectively, LOGCFL, NL and LOGCFL algorithms, which matches the optimal combined complexity

    Opinions from the field: Graduate assessments of the value of master's degrees in arts administration.

    Get PDF
    Respondents generally reported that the degree helped them in their job searches and prepared them well for work in the arts. Open-ended responses, however, allowed them the opportunity to discuss their misgivings with the degree and problems they found in their job searches. Respondents listed a lack of mid-level or higher-paying jobs and a need for more training in fund raising, accounting, and other areas of business management. The most important aspects of their programs were their courses in marketing, fund raising, business applications such as accounting and management, and the application of these topics specifically to the arts and non-profits. They also valued their practical experiences and networking opportunities. The results of this study generally support the value of master's degrees in arts administration and offer recommendations for the improvement of these degree programs.Some question the value of such a degree, considering that prior studies show that experience is often preferred over formal training. This study was designed to determine the value of the degree by surveying graduates of these programs on their training and their use of the degree in their work in the arts. A web-based survey was administered to 322 master's degree program graduates, of whom 202 were employed in the arts, 100 were employed outside the arts, and 20 were unemployed. Respondents answered a combination of forced-choice and open-ended questions, and basic and advanced statistical procedures were used to analyze the quantitative data.Although the field of arts administration has been described as a segmented family of professions, master's degree programs have been in place for over 30 years to provide advanced formal training for arts managers. The master's degree in arts administration or arts management was designed to offer a foundation in marketing, fund raising, business, management, accounting, law, and other areas of concern in the field of arts management. Thousands of people have graduated from these programs and now provide much of the management pool for today's arts organizations

    Constructive Dimension and Turing Degrees

    Full text link
    This paper examines the constructive Hausdorff and packing dimensions of Turing degrees. The main result is that every infinite sequence S with constructive Hausdorff dimension dim_H(S) and constructive packing dimension dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) / dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0, then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness extractor* that increases the algorithmic randomness of S, as measured by constructive dimension. A number of applications of this result shed new light on the constructive dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to hold for the Turing degree of any sequence S. A new proof is given of a previously-known zero-one law for the constructive packing dimension of Turing degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) = dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive Hausdorff and packing dimension equal to 1. Finally, it is shown that no single Turing reduction can be a universal constructive Hausdorff dimension extractor, and that bounded Turing reductions cannot extract constructive Hausdorff dimension. We also exhibit sequences on which weak truth-table and bounded Turing reductions differ in their ability to extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems, 45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to insufficient care with the choice of delta. This version modifies that proof to fix the error

    Document synthese sur l'acces et le partage des avantages issus de l’utilisation des ressources genetiques (APA) et des connaissances traditionnelles associees au Benin

    Get PDF
    These guidelines introduce the legal instruments and systems established in Benin for the mutually supportive implementation of the International Treaty and the Nagoya Protocol, describing the public bodies involved in the administration of these laws. The guidelines also include how to steps for access seekers applying for access to plant genetic resources in Benin, including forms and templates to be completed when submitting requests. Very significantly, these guidelines were co-developed by the two lead agencies responsible for the administration of the International Treaty and the Nagoya Protocol respectively

    Algorithmic statistics: forty years later

    Full text link
    Algorithmic statistics has two different (and almost orthogonal) motivations. From the philosophical point of view, it tries to formalize how the statistics works and why some statistical models are better than others. After this notion of a "good model" is introduced, a natural question arises: it is possible that for some piece of data there is no good model? If yes, how often these bad ("non-stochastic") data appear "in real life"? Another, more technical motivation comes from algorithmic information theory. In this theory a notion of complexity of a finite object (=amount of information in this object) is introduced; it assigns to every object some number, called its algorithmic complexity (or Kolmogorov complexity). Algorithmic statistic provides a more fine-grained classification: for each finite object some curve is defined that characterizes its behavior. It turns out that several different definitions give (approximately) the same curve. In this survey we try to provide an exposition of the main results in the field (including full proofs for the most important ones), as well as some historical comments. We assume that the reader is familiar with the main notions of algorithmic information (Kolmogorov complexity) theory.Comment: Missing proofs adde

    Computable randomness is about more than probabilities

    Get PDF
    We introduce a notion of computable randomness for infinite sequences that generalises the classical version in two important ways. First, our definition of computable randomness is associated with imprecise probability models, in the sense that we consider lower expectations (or sets of probabilities) instead of classical 'precise' probabilities. Secondly, instead of binary sequences, we consider sequences whose elements take values in some finite sample space. Interestingly, we find that every sequence is computably random with respect to at least one lower expectation, and that lower expectations that are more informative have fewer computably random sequences. This leads to the intriguing question whether every sequence is computably random with respect to a unique most informative lower expectation. We study this question in some detail and provide a partial answer
    corecore